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The motivation for this research was the need for a reliable prediction of the distribution of microstructural
parameters in steels during thermomechanical processing. The stochastic model describing the evolution of
dislocation populations and grain size, which considers the random phenomena occurring during the hot
forming of metallic alloys, was extended by including phase transformations during cooling. Accounting for
a stochastic character of the nucleation of the new phase is the main feature of the model. Steel was selected
as an example of the metallic alloy and equations describing the nucleation probability were proposed for
ferrite, pearlite and bainite. The accuracy and reliability of the model depends on the correctness of the
determination of the coefficients corresponding to the specific material. In the present paper these coeffi-
cients were identified using the inverse analysis for the experimental data. Experiments composed constant
cooling rate tests for cooling rates in the range 0.1-20 �C/s. The inverse approach to a nonlinear model is ill-
conditioned and must be transferred into an optimization problem, which requires formulating the
appropriate objective function. Since the model is stochastic, it was a crucial, yet demanding task. The
objective function based on a metric of the distance between measured and calculated histograms was
proposed to achieve this goal. The original stochastic approach to identifying the phase transformation
model for steels was tested, and an appropriate optimization strategy was proposed.

Keywords heterogeneous microstructures, identification,
multiphase steels, nucleation, optimization, phase
transformations, stochastic model

1. Introduction

Numerical models, which can predict the evolution of
various microstructural parameters in metallic materials, have
been intensively investigated during the last few decades.
Numerous equations describing the evolution of the microstruc-
ture during hot forming and during phase transformations have
been developed. A review of the phenomenological microstruc-
ture evolution models, commonly used in the second half of the
twentieth century, is presented in (Ref 1). Recently, mean-field
and full-field material models have been distinguished in the
literature (Ref 2, 3). Thorough review of these two groups of
models is presented in the PhD thesis (Ref 4). In the mean-field
models, the microstructure is implicitly represented by equa-
tions describing the dislocation density (uniform per grain), the

average grain size, the kinetics of phase transformations, etc.
The full-field models are based on an explicit representation of
the microstructure using either the representative volume
element (RVE) (Ref 5) or the digital materials representation
(DMR) concept (Ref 6). From one side, the full-field models
have extensive predictive capabilities and are much more
comprehensive. On the other side, they involve large comput-
ing costs.

Deterministic calculations, which are based exclusively on
either mean-field or full-field models, have some limitations.
Observations of different metallic materials show that deter-
ministic models are often too idealized and do not adequately
reflect the complexity of the heterogeneous microstructure. For
example, the prediction of grain structure during hot forming
may be difficult because the size of the recrystallized and non-
recrystallized grains may vary significantly. To include these
aspects in modeling, it is necessary to consider distributions
(histograms) of the microstructural parameters instead of their
average values. Moreover, such microstructural phenomena as
recrystallization and nucleation during phase transformation are
stochastic in their nature and they appear with certain
probability. Thus, stochastic microstructure evolution models
are needed to describe these phenomena.

Accounting for stochasticity of the microstructure evolution
is common in the scientific literature (Ref 7). Many applications
are dedicated to solidification (Ref 8) and to fluid flow
computations (Ref 9). The primary attempt to introduce
stochasticity in plastic deformation was proposed in (Ref 10),
where the stochastic contours of the propagating dislocation
fronts are modeled. Several publications describing stationary
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and non-stationary state stochastic models of the evolution of
dislocations are discussed in earlier paper (Ref 11). The model,
which considers the stochastic character of recrystallization
occurring during hot forming and describes the evolution of the
dislocations and the grain size, was formulated in Ref 12. The
coefficients in this model were identified on the basis of
experimental data, and the validated version of the model with
examples of applications is presented in (Ref 13). However,
since cooling after hot forming decides about the properties of
final products, the hot forming model was extended by
including phase transformations. The histograms of the dislo-
cation density and the grain size, calculated by the stochastic
hot deformation model, were used as an input for the simulation
of phase transformations. Accounting for the stochastic char-
acter of the nucleation of the new phase and solution of the
differential evolution equation for stochastic variables was the
main objective of the present work. Stochasticity of the solution
is caused by both random input and random character of the
nucleation. Phase transformation model preceded by developed
earlier hot deformation model will be capable of simulating the
whole manufacturing cycle composed of hot forming and
controlled cooling. In consequence, fast calculations (mean-
field model) of evolution of heterogeneous microstructure
during the whole manufacturing cycle can be performed and
uncertainty of the final microstructure can be evaluated.

2. Motivation and Objectives

Modern construction materials should combine high
strength with a good workability and have a high strength-to-
density ratio. Multiphase steels with heterogeneous microstruc-
tures (the advanced high strength steels—AHSS) meet these
requirements and they have been of interest of researchers for
the last few decades (Ref 14, 15). Microstructure of these steels
is composed of ferrite matrix with hard islands of bainite,
martensite and sometimes retained austenite. Dual phase (DP)
and complex phase (CP) are leading examples of the AHSSs,
which are commonly used in the automotive industry (Ref 16).
Both these steels have good strength and good global
formability, represented by elongation in the tensile tests. The
microstructure and mechanical properties have been exten-
sively studied for DP steels (Ref 17), and it was observed that
combination of the soft ferrite matrix with hard islands of
martensite results in the high strength and total elongation. On
the other hand, it involves affects local formability due to sharp
gradients of properties at the interfaces. On the contrary, CP
steels with a heterogeneous mixture of bainite, martensite and
ferrite have smoother gradients of properties and better local
formability (Ref 15, 18), which make them suitable for stretch-
forming processes (Ref 19).

Beyond predictions of the microstructure heterogeneities, a
problem of the uncertainty of these predictions is also essential
and it is a significant challenge for modeling (Ref 20). Knowing
the possible spread of the predicted microstructural parameters
is important for technologists.

Two hypotheses were formulated on the basis of the
discussion above: (i) The properties of the multiphase steels
can be still improved by tailoring microstructural gradients (Ref
21). These gradients are due to the distributions of the grain
size and the dislocation density, as well as to crystallographic
texture and segregation of elements (Ref 15); (ii) a reliable

process design for manufacturing multiphase steels requires full
knowledge about possible spread of the predicted output
parameters, such as phase composition or ferrite grain size. The
uncertainty of the predictions is caused mainly by a lack of
repeatability of the boundary conditions caused by uncertainty
of the process conditions and the stochastic character of the
material behavior. Advanced numerical models, which are
based on the multiphysics and multiscale approach, and which
account for a stochastic character of the microstructure
evolution, are needed to prove the two hypotheses and to
support design of processing of the multiphase steels. Although
the reasons for the heterogeneity and uncertainty of the
predictions are different, the stochastic model proposed in the
present work can be used to investigate both these aspects.

Review of the literature shows that majority of the
publications treating about stochastic approach to the inverse
problem is dedicated to the uncertainty of the inverse solution.
Authors of these publications consider deterministic material
model and investigate the uncertainty of the identification of
these models. For example, in (Ref 22) a statistical information
about an observed state variable in a system is used to estimate
probabilistically unknown parameters through the solution of a
stochastic optimization problem. The present paper is dedicated
to the development, identification and verification of the
stochastic phase transformations model, which calculates
distributions (histograms) of microstructural features. The main
focus is on the formulation of the inverse problem applied to
the identification of this stochastic model, which justifies the
scientific importance of the research. The inverse approach
preceded the sensitivity analysis and solution of the inverse
problem dedicated to the identification of the coefficients in the
model. Application of the inverse approach to the identification
of the stochastic model stochastic equations describing the
nucleation of ferrite, pearlite and bainite were proposed in (Ref
23) and primary evaluation of these equations was performed.
The emphasis was put on the sensitivity analysis (SA) of the
model and evaluation of the importance of various coefficients.
Local SA was applied and the sensitivity factor was calculated
using the finite difference method. It was observed in (Ref 23)
that due to the mutual interrelation between transformations,
the non-physical influence of the coefficients was observed
when the increment of the coefficient in the finite difference
method was too large. It may cause problems during optimiza-
tion in the inverse solution when the search space is large.
Thus, in the present work, the SA was extended by evaluation
of the influence of the coefficients increments on the sensitivity
factors.

Formulation of the inverse problem dedicated to the
identification of the stochastic model was the main contribution
of the present work. A metric of the distance between measured
and calculated histograms of microstructural parameters was
used as the objective function for the inverse analysis, which is
a novel approach. Various optimization procedures for this
objective function were investigated, and the best optimization
strategy was proposed.

3. Stochastic Model of Phase Transformations

The developed model introduces stochastic aspect in
modeling microstructure evolution. It follows the idea de-
scribed in earlier publication (Ref 12) for recrystallization
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during hot deformation. The model simulates phase transfor-
mations occurring in steels during controlled cooling, which
takes place after hot deformation processes. The following
structural components in steels are considered: austenite, ferrite,
pearlite, bainite and martensite. It is assumed that at high
temperature the microstructure is fully austenitic. At the end of
the cooling process, the four remaining phases occupy the
whole volume of the material. The retained austenite, which
can appear under certain specific cooling conditions, is not
considered.

The model accounts for the stochastic character of the input
data (austenite grain size and dislocation density after hot
deformation are in the form of histograms) and for the random
character of the nucleation of the new phase. The growth of the
phases is described by a deterministic equation. The output of
the model consists of transformation temperatures and phase
volume fractions presented in the form of either histograms or
average values of these parameters calculated based on the
histograms. In the paper, the former will be referred to as the
stochastic output and the latter as the average output.

3.1 State of the Equilibrium

The phase transformation model describes the kinetics of the
transient state between the two equilibrium states, which are
described by the thermodynamics. The equilibrium for steels is
described by the phase equilibrium diagram Fe-Fe3C. Approx-
imation of the lines GS and ES in this diagram gives the
equations in Table 1, where T is the temperature in �C, t is the
time cca0, cca1, ccb0 and ccb1—coefficients, which were
determined using ThermoCalc software by researchers from
the Upper-Silesian Institute of Technology (see joint publica-
tion (Ref 24)). The following values of these were obtained:
cca0 = 4.677, cca1 = � 0.00555, ccb0 = � 1.0387 and ccb1 =
0.0024.

The current average carbon content in the austenite cc
increases with an increase of the ferrite volume fraction:

cc ¼
c0 � Ff ca
1� Ff

ðEq 3Þ

where c0—carbon content in steel, Ff—ferrite volume fraction
with respect to the whole volume, ca—carbon content in ferrite.

Other parameters in the model are: Ae3, Ae1—theoretical
temperatures of the beginning and the end of the ferritic
transformation, ceut—equilibrium carbon concentration at the
eutectic temperature, calculated as a cross point of lines (Eq 1)
and (Eq 2):

ceut ¼ cca0 þ cca1
cca0 � ccb0
cca1 � ccb1

ðEq 4Þ

The equilibrium volume fraction of ferrite at the temperature
Ae1 is calculated from the following equation:

Feut ¼
ceut � c0
ceut � ca

ðEq 5Þ

Equilibrium parameters determined by Eqs 1, 2, and 3-5
were used as boundary conditions for the model, which
describes the kinetics of phase transformations.

3.2 Nucleation of a New Phase

The nucleation is an initial step of each transformation. The
nucleation model has to describe how nuclei appear in time and
their nuclei locations. In the classical JMAK (Johnson-Mehl-
Avrami-Kolmogorov) theory, two nucleation modes are distin-
guished (Ref 24, 25). The first is a classical nucleation theory,
which assumes the uniform thermodynamic properties of the
nucleus and the sharp interface between the nucleus and the
parent phase. The second is the non-classical nucleation theory
of Cahn and Hilliard, which is based on the gradient
thermodynamics.

The classical nucleation models include: (i) the continuous
nucleation models, (ii) pre-existing nuclei models, (iii) Avrami
nucleation models and (iv) mixed nucleation models. All these
models are deterministic, and they are described in (Ref 25). A
few decades ago, a stochastic character of nucleation was
included in modeling of phase transformations and later, for
many years, the JMAK approach based on Poisson statistics has
been used. Although a majority of the published papers related
to stochastic nucleation deal with the crystallization, still solid
state transformations are addressed in some publications (see,
e.g., (Ref 26)). Following these ideas, it was assumed that the
phase transformations introduce stochastic element in the
model. This stochasticity relates to the random character of
the nucleation of the new phase. Following the framework of
classical nucleation model, in the present work a solution for
Poisson nucleation was performed. The deterministic nucle-
ation rate equation was replaced by an equation with a
stochastic variable, which accounts for the stochastic character
of the nucleation. The parameter n(ti), which represents this
stochastic variable, satisfies:

P n tið Þ ¼ 0½ � ¼
p tið Þ if p tið Þ< 1

1 otherwise

�

P n tið Þ ¼ 1½ � ¼ 1� P n tið Þ ¼ 0½ �
ðEq 6Þ

In Eq 6 p(ti) is a function, which connects the probability of
the nucleation with a state of the material in a current time step.
This probability was formulated based on the published
information regarding nucleation (Ref 27, 28). As a main
framework for considerations, the following assumptions were
made:

• The nucleus of a new phase may appears only if the con-
dition for starting a given transformation is met. These
conditions for all structural components are listed in Ta-
ble 2.

• The ferritic transformation cannot start if the pearlitic, bai-
nitic or martensitic transformation has already started, the
pearlitic transformation cannot start if the bainitic or
martensitic transformation has already started and the bai-

Table 1 Equations describing equilibrium carbon concentrations [23]

Carbon concentration at the c/a interface line GS Carbon concentration at the c/cementite interface—line ES

cca ¼ cca0 þ cca1T tð Þ (1) ccb ¼ ccb0 þ ccb1T tð Þ (2)

Journal of Materials Engineering and Performance Volume 33(24) December 2024—13789



nitic transformation cannot start if the martensitic transfor-
mation has already started.

• The nucleation rate increases when the temperature drops
below Ae3, Ae1 and Bs for ferrite, pearlite and bainite
transformations, respectively.

• Grain boundaries and shear bands in the deformed mate-
rial provide privileged locations for nucleation; therefore,
the probability of nucleation should increase with a de-
crease of the austenite grain size and an increase of the
dislocation density.

Having in mind this knowledge and assuming Poisson
nucleation, the following equations were proposed:

Ferrite

p tið Þ ¼ a1D
�a2qa3 Ae3 � T tð Þ½ �a4Dt ðEq 7Þ

Pearlite

p tið Þ ¼ a11D
�a12qa13 Ae1 � T tið Þ½ �a14Dt ðEq 8Þ

Bainite

p tið Þ ¼ a21D
�a22qa23 a25 � T tið Þ½ �a24Dt ðEq 9Þ

where D is the austenite grain size, q is the dislocation density,
a1, a2, a3, a4, a11, a12, a13, a14, a21, a22, a23, a24, a25—coef-
ficients.

In each time step of calculations Dt, a random number within
the range [0,1] is drawn and compared with the probability p(ti). If
the value of the function p(ti) in the given time step is greater than
the drawn random number, according to Eq 6 the parameter
n(ti) = 0 and the new nucleus appears. In the case of martensite, it
was assumed that this transformation occurs when the temperature
drops below the Ms temperature and the random number is not
generated. However, according to Table 2, Ms depends on the
carbon content in the austenite, which, in turn, depends on the
progress of earlier transformations, see Eq. 3. In consequence, the
stochastic component is indirectly introduced into the martensitic
transformation.

It should be highlighted that in Eqs. 7-9, the grain size and the
dislocation density are stochastic variables (in the form of
histograms), which are calculated by the hot forming model
described in (Ref 13). Their distribution, however, is determined at
the beginning of Eqs. 7-9 and it does not change with time.

3.3 Kinetics of Transformations

After a nucleus of a new phase appears, it starts to grow
until another transformation begins or until all phases excluding
austenite occupy the whole volume, which marks the end of the

simulation. It was assumed that phase growth in the model is
deterministic in nature, which corresponds to the real phase
growth process. In order to avoid problems, which occur when
the temperature varies during the process, the Leblond
differential evolution equation with respect to time (Ref 29)
was selected. This equation does not need an application of the
additivity rule, what is an important advantage. In this approach
the rate of the transformation is proportional to the distance
from the thermodynamic equilibrium in a given temperature:

dX tð Þ
dt

¼ k X tð Þ � Xeq T tð Þð Þ
� �

ðEq 10Þ

where t—time, k—coefficient (at the temperature T), X(t)—cur-
rent volume fraction of a new phase, Xeq(T(t))—equilibrium
volume fraction of the new phase at the temperature T, which
for each phase is provided in Table 2.

Equation 10 is solved using the explicit Euler method:

X tið Þ ¼ X ti�1ð Þ þ k T tið Þð Þ Xeq T tið Þð Þ � X ti�1ð Þ
� �

Dt ðEq 11Þ

where Dt—time increment.
Coefficient k(T(ti)) in Eq 11 is a function that depends on

several factors, which are constant for the entire simulation, and
on the temperature changing over time. As it has been
originally shown in (Ref 29), Eq 11 describes well kinetics of
the diffusive transformations of ferrite and pearlite. In the case
of the bainite, displacive mechanism of the growth has to be
considered (Ref 30). When the parameter kb is properly defined,
Eq 11 is able to describe properly displacive growth, as well.
The formulas for function k for each transformation are as
follows:

Ferrite

kf T tið Þð Þ ¼ a6
Da10

exp � T tið Þ � a7j j
a8

� �a9� �
ðEq 12Þ

Pearlite

kp T tið Þð Þ ¼ a16
Da20

exp � T tið Þ � a17j j
a18

� �a19� �
ðEq 13Þ

Bainite

kb T tið Þð Þ ¼ a26
Da30

exp � T tið Þ � a27j j
a28

� �a29� �
ðEq 14Þ

Volume fraction X(ti) in Eq 11 is calculated with respect to
the maximum volume fraction of the considered phase at the
temperature T(ti), whereas the final result of the model
calculations is F(ti), which is the volume fraction of the
considered phase with respect to the whole volume. By
definition, the equilibrium volume fraction Xeq is nonnegative
and bounded from the above by 1. Thus, X(ti) for each phase is
within a range [0,1]. It is worth mentioning that by the
definition, the sum of F(ti) of all phases equals 1, because it
corresponds to occupancy of the whole volume of the sample
(see Table 3). As it has been mentioned, grains grow until
another transformation starts or until all phases, excluding
austenite, occupy the whole volume. In the case of the
martensite, it is assumed that this phase occupies the whole
volume of the austenite, which remained after preceding
transformations at the temperature Ms. Recall, that formulas
describing equilibrium volume fractions Xeq in Eq 11 and
volume fractions F for each phase are listed in Table 3. In this
table Ffmax(T) is the equilibrium volume fraction of the ferrite at

Table 2 Conditions determining the beginning of
subsequent transformations, where Bs, Ms—bainite and
martensite start temperatures, respectively, a25, a31,
a32—coefficients in the model

Transformation Condition to start

Ferrite T < Ae3

Pearlite cc > ccb(T)
Bainite T < Bs = a25
Martensite T < Ms = a31-a32cc
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the temperature T. Maximum ferrite volume fraction in steel is
equal to the equilibrium ferrite volume fraction at the eutectic
point Feut, which is defined by Eq 5.

In the developed model coefficients a1, …, a32 are
determined by the inverse analysis for the experimental data.
The model with optimized coefficients predicts distributions of
volume fractions of phases. These parameters will be used to
predict local gradients of properties, which influence formabil-
ity (Ref 31).

Numerical tests, which evaluated an influence of selected
numerical parameters used in the model on the accuracy and the
computation time of simulations, were already conducted in
previous paper (Ref 23). The following issues were investigated
in relation to their influence on the reliability of results of
numerical experiments: (i) type of the random number gener-
ator (RNG), (ii) maximum time step and temperature change
during the time step, (iii) sufficient number of the Monte Carlo
(MC) points. The optimal values of these parameters were
proposed having in mind a balance between accuracy and
computing times. On the basis of these tests, it was concluded
that:

• The model result does not depend on a random number
generator, which was used.

• Setting the maximum temperature change per step to
0.1 �C and the maximum time change per step to 0.5 s re-
sults in a good balance between accuracy and computing
costs.

• Outputs of simulations are stable (i.e., the simulation re-
sult is not too random) above 10000 MC points. More-
over, performing the simulation for more MC points does
not ensure that the result is better, but it increases the
computational cost.

4. Sensitivity Analysis and Uncertainty
of the Stochastic Model Identification

The sensitivity analysis (SA) (Ref 32, 33) preceded the
inverse analysis with the objective to evaluate importance of
the coefficients in the stochastic model and to find the
coefficients which influence the output most. The effect of
the change of the jth coefficient (Daj) on the model output is:

For the average output parameters:

vjðaÞ ¼
aj
Daj

y a1; . . . ; aj�1; aj þ Daj; ajþ1; . . . ; ak
� �

� y að Þ
y að Þ

ðEq 15Þ

For the output histograms:

vjðaÞ ¼ aj
d H1;H2ð Þ

Daj
ðEq 16Þ

where vj—the sensitivity factor for the jth coefficient, Daj—an
increment of the jth coefficient, y(a)—output of the model in
the form of average values of parameters, H1—the basic
histogram calculated for the coefficients a, H2—histogram
obtained after disturbance of the coefficient aj by Daj,
k—number of coefficients in the model.

The distance between histograms H1 and H2 in Eq. 16 is
measured using the earth mover’s distance (EMD), which is
defined by the formula (see (Ref 34)):

EMD ¼
Xn
m¼1

EMDmj j EMDm ¼
Xm
l¼1

H1 lð Þ � H2 lð Þ½ �

ðEq 17Þ

where n—the number of bins in the histogram.
All calculations for the output in the form of average values

of parameters were performed for the forward and backward
finite difference quotients. Since similar sensitivity factors were
obtained for different quotients, the results for the forward finite
difference quotient only (Eq 15) are presented.

The Monte Carlo method with 10000 MC points was used
in simulations. Since the model is stochastic, the result can be
different for each simulation run even for the same set of
coefficients. Thus, the SA can state that there is an influence of
some coefficients even if the result did not significantly change.
To improve the SA, it was decided to filter this, ‘‘stochastic
noise’’ by discarding the cases, in which the change of the
output is below a certain threshold (vj = 0 was assumed). On
the basis of the numerical tests performed in (Ref 23), the
threshold of 2 �C for temperatures and 0.004 for volume
fractions was used.

The primary SA for the model was performed in (Ref 23)
assuming Daj = 0.1aj. However, due to a mutual interrelation
between transformations, a non-physical influence of the
coefficients was sometimes observed for such large increments
Daj. Thus, in the present paper it was decided to evaluate the
influence of the coefficients increments on the SA results and
calculations for increments 10%, 5%, 3% and 1% of aj were

Table 3 Formulae describing equilibrium volume fractions Xeq in Eq 11 and volume fractions F for each phase

Transformation Equilibrium volume fraction Volume fraction with respect to the whole volume

Ferrite Xeq Tð Þ ¼ Ff max Tð Þ
Feut

Ff max Tð Þ ¼ cca Tð Þ�c0
cca Tð Þ�ca

)
for T > Ae1

Xeq Tð Þ ¼ Xeut ¼ 1 for T � Ae1

Ff Tð Þ ¼ Xf Tð ÞFeut Tð Þ

Pearlite Xeq(T) = 1 Fp Tð Þ ¼ Xp Tð Þ 1� Ff Tð Þ
� �

Bainite Xeq(T) = 1 Fb Tð Þ ¼ Xb Tð Þ 1� Ff Tð Þ � Fp Tð Þ
� �

Martensite Fm Tð Þ ¼ 1� Ff Tð Þ � Fp Tð Þ � Fb Tð Þ
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Fig. 1 Sensitivity Analysis (SA): influence of the model coefficients on the start temperatures of ferrite (a) pearlite (b), bainite (d) and
martensite (e) and pearlite end temperature (c) for various increments Daj in Eq 15 and for various cooling rates
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performed. The coefficients a3, a13 and a23 were not considered
because they are responsible for the influence of a dislocation
density, which is not yet taken into account in the cooling
model. The coefficients a5 and a15 were not considered either,
because currently they do not appear in the model. The
temperature of the end of bainite transformation was not
considered because it has not appeared in the experiments for
the investigated steel. The SA was performed for the three
cooling rates: 0.25 �C/s, 5 �C/s and 33.5 �C/s, and the results

are shown in Fig. 1, 2 and 3. Since bainite and martensite do
not occur for the cooling rate of 0.25 �C/s, these results are
omitted, as well. Absolute values of the sensitivity factors are
presented in the figures.

During the SA, specific cases were observed, in which a
change of the coefficient aj by Daj resulted in a situation that the
transformation which occurred for the original set of coefficients
disappeared or vice versa. It happened for the coefficient a14 (a
decrease by 10% and 5% resulted in disappearing of the pearlite)

Fig. 2 Sensitivity Analysis (SA): influence of the model coefficients on the average volume fractions of ferrite (a), pearlite (b), bainite (c) and
martensite (d) for various increments Daj in Eq 15 and for various cooling rates
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and for the coefficient a25 (an increase by 10% resulted in
disappearing of the pearlite). The sensitivity factor could not be
calculated for this qualitative change of the output, and these
cases were marked with a bar surrounded by a line and with a
symbol ¤. The length of this bar has no meaning. This
disappearing and appearing of the transformation can cause
difficulties in the coefficients identification.

The analysis of the results of the SA brought the conclusion
that for the simulation result the most crucial coefficients are a4,
a14, a25 and a31. The following coefficients have the biggest
impact on the individual output parameters:

• Ferrite temperature start: a4
• Pearlite temperature start: a14, a25
• Pearlite temperature end: a14
• Bainite temperature start: a25
• Martensite temperature start: a31

• Ferrite volume fraction: a4, a6, a7, a25
• Pearlite volume fraction: a14, a25
• Bainite volume fraction: a14, a25, a31
• Martensite volume fraction: a4, a6, a7, a14, a25, a31

Coefficients a1, a2, …, a9, a10 appear in the ferrite transfor-
mation in the model, coefficients a11, a12, …, a19, a20 in the
pearlite transformation, coefficients a21, a22, …, a29, a30 in the
bainite transformation, and coefficients a31 and a32 in the
martensite transformation. It is clear that changes in coefficients
may significantly influence respective temperature or volume
fraction in the model output. However, as was revealed by the
SA, the coefficients that appear in one transformation can
influence the volume fraction of other phase as well. Since the
volume fractions of all phases sum up to 1, if one phase takes
significantly more/less volume (because of an earlier/later start
of the transformation or a faster/slower growth of the phase), it

Fig. 3 Sensitivity Analysis (SA): influence of the model coefficients on the histograms of the volume fractions of ferrite (a), pearlite (b), bainite
(c) and martensite (d) for various increments Daj in Eq 16 and for various cooling rates
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will also affect other phases. That change in the volume does
not affect the temperatures of start of the transformations
though—in Fig. 1 it is clearly seen that the only influence on
the temperatures comes from the coefficients that appear in the
respective transformation. However, there can be exceptions to
that, because when one transformation begins much earlier, it
can result in not starting the previous transformation, in
consequence in some MC points this transformation does not
occur at all and that has influence on the average tempera-
ture—in the described SA it happened in the case of the
coefficients a25 and a31. Their change caused that, respectively,
pearlitic or bainitic transformation did not occur for some MC
points. This can affect more than one temperature, e.g., if Da25
is large, it causes that even the ferritic transformation may not
occur in some MC points. Similarly, when some coefficients,
e.g., a25, are lowered, it can result in starting a previous
transformation in some MC points even if without a coefficient
change that transformation would not appear at all in these MC
points.

Other important conclusions from this SA are: (a) the
change of the coefficients affects volume fractions relatively
much more than the temperatures, (b) with low cooling speed
the change of the coefficients does not affect the result much,
compared to the other cooling speeds—less coefficients can
change the result significantly and the influence is lower, (c) the
coefficients that affect the simulation result the most are the
ones responsible for starting of a transformation, and not the
ones responsible for the growth of a phase.

The smallest Daj (with a 0.01% accuracy), for which any
coefficient change does not affect the simulation result, was
also found. This happens for Daj equal 0.0033aj. From
Daj = 0.01aj downwards, there is only influence of the
coefficients a4, a14, a25 and a31. However, several coefficients
(ie. a1, a11, a16, a17, a18, a19, a21, a26, a27, a28, a29, a30, a32) can
be changed by 0.05aj without influencing the simulation result.

The SA determined the model coefficients, which contribute
the most to the model output and those, which are not
significant (Ref 35). The SA results were used as a support for
the design of the optimization strategy in the inverse analysis.

5. Identification of the Coefficients
in the Stochastic Model

The stochastic model of phase transformations contains
several coefficients, which must be determined for each specific
material. In general , these are fitting coefficients, which allow
to reproduce the experimental data. Some of these coefficients
have a physical meaning but they still have to be determined for
each investigated steel. Identification of the coefficients is
performed using inverse analysis for the experimental data.
These data contain both measurements of the average transfor-
mation temperatures and measurements of histograms of phase
volume fractions.

5.1 Formulation of the Inverse Problem for the Stochastic
Experimental Data

The problem of the identification of the coefficients in
material models is widely discussed in the scientific literature as
the inverse problem (Ref 36-38). The algorithm for the
stochastic inverse problem is described in (Ref 39). Inverse

approach is transferred into an optimization task with the
coefficients a becoming the state variables and the following
objective function:

UðaÞ ¼ d ycðaÞ; ymð Þ ðEq 18Þ

where yc(a)—outputs calculated for the model coefficients a,
ym—measurements in the experimental tests, d—metric in the
output space Y.

In earlier paper (Ref 12), the optimization task was redefined
for the stochastic variable model. Since the output of the
stochastic model is in the form of histograms, the metric d in Eq
16 had to take into account that the random variable n(ti) in the
Eq 6 and stochastic nature of D and q (input parameters for the
model) can lead to different single solutions for the same
starting values. Similarly, as it was done in the sensitivity
analysis (Sect. 4), EMD was used as the measure of the distance
between calculated (Hc(a)) and measured (Hm) histograms. To
be able to apply EMD metric (Eq 17), the experimental data
should include information on distributions of the temperatures
of phase transformations and phase fractions. Since the
measurement of histograms of these temperatures is not
physical, it was decided to compare only histograms of phase
fractions and average start and end temperatures of transfor-
mations. Thus, the objective function (Eq 18) was reformulated
to a hybrid form as follows:

UðaÞ ¼ UT ðaÞ þ UFðaÞ ðEq 19Þ

The components of the objective function are calculated as
follows. The component UT(a) is the sum of the mean square
root errors (MSRE) between measured and calculated average
start/end temperatures of transformations:

UT ðaÞ ¼
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The component UF(a) is the sum of the EMDs (Eq 17)
between measured and calculated histograms of the phase
volume fractions after cooling:

UFðaÞ ¼
XNe
i¼1

wF

Nfi

XNfi
j¼1

EMD Hm
ij ;H

c
ij að Þ

� 	 !
ðEq 21Þ

where Tc(a)—average value of the start/end temperature of
transformation calculated for model coefficients a, Tm—the
average start/end temperature of transformation determined
from the dilatometric tests (Ref 24), Hm—distribution (his-
togram) of the phase fraction measured in the dilatometric tests,
Hc(a)—distribution (histogram) of the phase fraction calculated
by the model with coefficients a. Superscripts m and c refer to
measurement and calculations, respectively.

5.2 Optimization with the Objective Function Based
on the Measured and Calculated Average Values
of Microstructural Parameters

In the case of the inverse analysis carried out in this work,
the coefficients a = {a1,…, a32}

T for the analyzed stochastic
model of phase transformations have to be determined. As it is
seen in Sect. 3, the coefficients a directly influence modeling of
the cooling of the steel components after hot forming. In this
process, the model predicts the start and end temperature of
phase transformations (T) and volume fractions of structural
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components (F) after cooling. The inverse analysis described in
Sect. 5.1 was used to determine coefficients of the model based
on the experimental data.

5.2.1 Experiment. The material used in the experiments
was the steel containing 0.12%C and 1.3%Mn and 0.05%Si
(Ref 24). The experiments composed dilatometric tests per-
formed with cooling rates in the range 0.1 � 100 �C/s. Two
austenitization temperatures were used (1080 �C and 1150 �C),
and in consequence, two austenite grain sizes prior to
transformations were obtained (17 and 24 lm). The austeniti-
zation time was 120 min in every test. The experimental data,
which are available now, provided information on the trans-
formation temperatures, as well as volume fractions of the
structural components for different austenite grain size prior to
transformations. Thus, the primary objective of the work was
the identification of the model coefficients for the average
values of the output parameters. At this stage, there were not
available experimental data for the non-recrystallized austenite
and the effect of the dislocation density prior to transformations
could not be evaluated. Thus the coefficients a3, a13 and a23
were assumed zero, which is adequate for the recrystallized
austenite.

5.2.2 Definition of the Objective Function. The correct
definition of the objective function is crucial for the quality of
the optimization. At this stage of the project, the histograms of
the output parameters are not measured. Therefore, the
objective function based on measurements of the average
values (instead of histograms) of transformation temperatures
and phase volume fractions was proposed. Consequently, in Eq
21 the term with EMDs was substituted by the root mean
squared error (RMSE) between measured and calculated
average phase volume fractions and then combined with Eq
20. Finally, the following objective function was proposed:

U að Þ¼
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ðEq 22Þ

where Ne—number of the tests, Nti—number of the temperature
measurements in the ith test, Nfi—number of the average phase
volume fractions measured in the ith test, T—start or end
temperature of the phase transformation, F—phase volume
fraction after cooling, wT, wF—weights for temperatures and
phase volume fractions, respectively. Superscripts m and c refer
to measurements and calculations, respectively.

Since volume fractions of phases by definition are in the
range [0,1], the square of the difference between measured and
calculated values of F in Eq 22 is not divided by the measured
value.

5.2.3 Selection of Weights for Objective Func-
tion. Since absolute values of temperatures and phase volume
fractions differ significantly, their influence on the objective
function has different range. Thus, a selection of weights in Eq
22 is important. The weights have no physical meaning, they
decide about the contribution of the temperatures and the phase
volume fractions to the objective function. The sum of the
weights should be equal 1. In the first approach, the weights
wT = 0.5 and wF = 0.5 were used. The objective function
U = 0.346 was obtained. However, evaluation of the obtained
results indicated that a more accurate solution for the average
volume fractions would be possible if larger weights were used

for the volume fractions and smaller weights for temperatures.
After the tests, it was decided to use wT = 0.1 and wF = 0.9.
This resulted in more accurate results for volume fractions, at
the expense of a small loss in the accuracy for temperatures.
The lowest value of the objective function obtained after
changing the weights was U = 0.114. By using the objective
function (20), it was possible to determine the model coeffi-
cients for the analyzed steel.

5.2.4 Selection of the Optimization Method. To accom-
plish this task, several optimization algorithms were tested,
including the most promising global heuristic optimization
methods. Population-based algorithms are now commonly used
in various applications. The particle swarm optimization (PSO),
which was successfully applied to identification of the stochas-
tic hot forming model (Ref 12), was selected for all subsequent
optimizations in the present work.

5.2.5 Emerging Problems in Optimization. The main
problem in the identification of the phase transformation
models is the large number of coefficients. The local minima,
which are due to strong dependencies between the models of
individual phase transformations, are another difficulty. The
next problem is finding solutions for all coefficients with wide
ranges, where even the smallest changes in the coefficients
generate significant changes in the model response, as shown
by the SA in Chapter 4.

It has already been shown in publication (Ref 40) that
connections between the models of individual phase transfor-
mations do not allow to identify the transformation models
independently. Improving the model of one transformation very
often resulted in a deterioration of the transformation model of
another phase. Therefore, it is necessary to perform optimiza-
tion on all coefficients simultaneously for the result to be
reliable and stable. With deterministic models, researchers have
already struggled to solve problems with a very large number of
local minima when using inverse analysis. The optimization
was divided into separate steps using a multistage approach. In
the first step, the coefficients responsible for the successive
start/end temperatures of phase transformations and the phase
volume fractions were optimized separately in the following
groups: ferrite start temperature (a1, a2, a3, a4), pearlite start
temperature (a11, a12, a13, a14), bainite start temperature (a21,
a22, a23, a24, a25), martensite start temperature (a31, a32), ferrite
volume fraction (a6, a7, a8, a9, a10), pearlite volume fraction
(a16, a17, a18, a19, a20) and bainite volume fraction (a26, a27,
a28, a29, a30). This allowed for the initial detection of optimal
ranges for coefficients. Initial narrowing of the ranges for the
coefficients resulted in a much lower objective function when
optimizing on all coefficients. The best results were achieved
by a strategy that used knowledge about the best individuals
from the population from previous optimizations in a multi-
stage approach.

5.2.6 Results of Optimization on Average Values. The
optimal coefficients obtained during inverse analysis for the
average experimental data are presented in Table 4. The graphs
showing comparison of measured and calculated transformation
temperatures and phase volume fractions are presented in
Fig. 4. In this figure F, P, B and M refer to ferrite, pearlite,
bainite and martensite and indices s and e refer to start and end
temperatures of transformations.
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6. Numerical Tests of the Inverse Analysis
for the Stochastic Experimental Data

Inverse analysis for the measured microstructure parameters
in the form of histograms allows for a more accurate
identification of the model coefficients by using the entire
available frequency distribution. However, this also translates
into a much higher computational effort and thus a much longer
optimization.

6.1 Formulation of the Inverse Problem

As it has been mentioned in the previous chapter, at this
stage of the project the measurements of histograms of the
output parameters are not available. The objective of numerical
the tests described in this chapter was to evaluate capability of
the inverse analysis to determine coefficients in the model when
such measurements of the histograms are available. Thus, the
histograms of phase volume fractions were calculated using the
model with the coefficients in Table 4 and these histograms
were considered as experimental data. Following this, the
values of the coefficients were randomly perturbed and
optimization was performed.

The optimization was performed for the objective function
(Eq 19), which is a successive summing of the square root
errors between measured and calculated transformations tem-

peratures and metrics of the distance between the measured and
calculated histograms of the phase volume fractions. The Earth
Mover’s Distance (EMD) defined by the Eq 17 was selected as
the latter metrics.

6.2 Discussion of the Optimization Problems and Results

6.2.1 Emerging Problems in Optimization
for the Stochastic Experimental Data. The main problems
in identification of the stochastic phase transformation models
are similar to those discussed in Sect. 5.2 for the optimization

Fig. 4 Comparison of the measured and calculated for the optimal coefficients temperatures of phase transformations (a, c) and volume
fractions of structural components (b, d), austenite grain size prior to transformations 17 lm (a, b) and 24 lm (c, d)

Fig. 5 Decrease of the objective function in subsequent
optimization runs when the best individuals are remembered
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based on measurements of average values of microstructural
parameters. However, in the case of a stochastic model, where
the number of model calls corresponds to the number of Monte
Carlo (MC) points used, these problems generate a huge
computational effort and the probability of obtaining a local
minimum is higher. The local solution in most cases generates
incorrect coefficients for a given model.

6.2.2 Proposed Solutions to Emerging Problems. It was
decided to solve the problem related to the high number of
optimized coefficients by using cascade models and optimizing
each phase separately. This approach allowed for the initial
narrowing of the ranges for the coefficients and, based on them,
the creation of attractive individuals for optimization for all

phases simultaneously. The problem of occurrence and getting
stuck in local minima was solved by using multiple optimiza-
tion runs with a new population, whenever the optimization
stops at one point for a long time. The selection of Monte Carlo
points for optimization was based on the results of the solution
stability tests and is described in more detail later in the article.
The optimization strategy for effective identification takes into
account results of the sensitivity analysis. The approach used
allows for a significant reduction in the search space for
coefficients, which translates into shorter calculation time and
better results.

The analyses indicated that the best strategy was based on
partial optimizations for each phase, which indicated the ranges
for coefficients where good solutions occurred. These ranges
were then used to optimize on all coefficients simultaneously.
For subsequent optimization runs, sets of coefficients that
generated good solutions were added to the new population in
order to search their neighborhoods.

6.2.3 Adjusting the Optimization Ranges. For some
coefficients, the model output was extremely sensitive to even
their small changes. This was important for the coefficients a1
and a11, which had values with a high degree of decimal
accuracy. In order to eliminate this phenomenon, a range of
updating mechanism was used. After a certain number of
iterations, recorded the data of the best individual from the
population and then updated the ranges for optimization. This
approach allowed for excluding ranges where the solutions
generated the large objective function, and then slowly
approaching the appropriate values for the coefficients.

Fig. 6 Decrease of the objective function depending on the
optimization strategy

Fig. 7 Selected examples of comparison of measured and calculated histograms of the volume fractions of ferrite (a), pearlite (b) and bainite
(c) for the cooling rate of 15 �C/s
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6.2.4 Selecting the Number of Monte Carlo Points
for Optimization. The number of MC points was another
particularly important problem in the optimization. It was
proved in (Ref 23) that the model is stable at the level of 10,000
points. When optimizing for all coefficients, using such a large
number of MC points is inefficient. Almost the whole time is
used on calculations performed for combinations of coefficients
that are very far from the best solution. A solution in this case
may be a cascade approach to identify model coefficients (Ref
41).

For temperatures, it was decided to adopt values that do not
exceed 1 �C of difference between two subsequent model calls.
For volume fractions, it was decided to adopt values that do not
exceed EMD = 0.1 between two consecutive model calls.
Following the above-mentioned rule, it was decided to adopt
4000 points for the starting temperature of the ferritic and the
pearlitic transformation, 2000 points for the starting tempera-
ture of the bainitic transformation, and 1000 points for the
starting temperature of the martensitic transformation. For
volume fractions, the stability was achieved for 2000 points for
ferrite, 4000 points for pearlite and 1500 points for a bainite.
This approach significantly reduced the computational cost of
optimization while maintaining satisfactory accuracy of results.

Optimization for all phase transformations was performed
for 10000 MC points, and good accuracy was obtained. This
was due to the fact that ranges of occurrence of valuable
solutions or coefficients that well reflected individual phases
during partial optimizations have already been available.

6.2.5 Performing Partial Optimizations. During partial
optimizations, a predetermined number of MC points was used,
based on research on the stability of model solutions for
individual phases. The generated solutions for three process
parameters were placed in histograms containing 10 bins. In
order to reduce the required number of calculations, it was
decided to limit the number of used different cooling rates tests
to seven, selecting those that are the most important, as they are
located on the edges of the occurrence of the phase transfor-
mations.

In the PSO, a population of 24 individuals was used. The
number of optimization runs depended on whether the value of
the objective function achieved better values after subsequent
optimization runs. If it decreased, it was possible to update the
ranges. If not, the partial optimizations for a given parameter
were completed. This approach allowed to determine the ranges
for the coefficients for all temperatures and volume fractions,
respectively. With global optimization using wide ranges,
achieving such low values would be problematic and extremely
time-consuming due to the high number of coefficient combi-
nations and the wide occurrence of local minima. The current
approach found ranges where there should be mostly good
solutions for a given parameter.

6.2.6 Optimization for All Phase Transforma-
tions. After obtaining the coefficients for each parameter
separately, it was possible to determine the ranges for
optimization for all phase transformations. It was possible to
configure a set of coefficients consisting of the best ones found
from the partial optimizations. The created set of coefficients
allowed to start optimization with an individual in the
population that well reproduced the experimental data for
individual phases.

An important issue when creating ranges for coefficients
around the best points was how much to increase/decrease the
coefficients for such optimization. For the purposes of present

research, it was decided to examine the neighborhood of the
best coefficients found during partial optimizations, perturbing
the best coefficients by 10% and taking these values as the
minimum and maximum ranges for the coefficients.

To test the capabilities of the adopted optimization method-
ology, the tests were carried out on a smaller number of Monte
Carlo points and a simplified objective function (only one grain
size D = 17 lm was considered). The purpose of these tests
was to demonstrate the capabilities of remembering the best
individuals from the population. The graph in Fig. 5 shows that
the technique of remembering the best individuals from
previous optimizations allows subsequent optimizations to start
at the point where the previous ones ended. This approach is
valuable because the random population generated at the start
of each new optimization may contain better individuals.

It was decided to perform optimization on the adopted
ranges using 100 iterations. The population was assumed to be
eight individuals, and an individual was added to it based on
the best coefficients obtained from partial optimizations. 10000
MC points were used during the optimization, which aimed to
find a stable and accurate result. A graph showing the decrease
of the objective function (17) is presented in Fig. 6. Results for
the four following runs are presented: (1) random initial
population, (2) random initial population with additional the
best individual from the run 1 added, (3) random initial
population with additional the best individuals from the runs 1
and 2 added, (4) random initial population with the additional
individual created on the basis of the best individuals from the
partial optimization added.

The graph shows that there are benefits to the approach of
using the best coefficients from partial optimizations and
creating an individual from them. This approach allowed to
start optimization in proximity to the low local minimum. For
comparison, the graph also shows the decrease of the objective
function when no additional individual created on the basis of
the best coefficients from partial optimizations was used. Then
the best individual from this population was added to the next
optimization run.

The approach used here seems valuable. By finding sets of
coefficients in partial optimizations and then using the best
coefficients, it is possible to obtain accurate results. Combined
with the technique of remembering the best individuals from
each optimization run, this allows the value of the objective
function to be improved in each subsequent run. The results
obtained during optimization allowed the identification of
models with no visual differences comparing to the plots in
Fig. 4; therefore, these data are not presented.

Figure 7 shows an example of a comparison between the
measured and calculated histograms for the volume fractions of
ferrite, pearlite and bainite. The calculated histograms were
obtained from the model with coefficients, which gave the
lowest value of the objective function (Eq 19). Histograms were
generated for 10000 Monte Carlo points. The adoption of such
a number resulted from stability studies, where it was
established that for such a number the model result becomes
stable.

The histograms obtained from the model coincide with those
from the experiments. The differences in the histograms are
negligible, which also translates into a very low objective
function.
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7. Conclusions

The stochastic phase transformations model, which accounts
for a random character of phase transformations during cooling
of steels and calculates distributions (histograms) of microstruc-
tural features, was proposed. The numerical tests, with the
objective to select the best numerical parameters, were
performed, and the following conclusions were drawn:

(1) The use of a random factor results in generating a di-
verse output histograms, which allows for the characteri-
zation of the heterogeneous microstructures. Beyond
this, the model reflects the random nature of a nucle-
ation of a new phase in steel.

(2) Maximum changes per step were determined as 0.1 �C
for temperature and 0.5 s for time. As a result, a good
balance between accuracy and computing costs was ob-
tained.

(3) The simulations were stable when at least 10000 Monte
Carlo points were used.

(4) The sensitivity analysis showed that the volume frac-
tions are much more affected than the temperatures by
the coefficients� change, and that the coefficients affect
the model less at low cooling rates. The coefficients
responsible for starting of transformations influence the
model output more than the ones responsible for a
growth of phases.

(5) Optimization on average values allowed the identifica-
tion of coefficients in the model based on the available
measurements at a satisfactory level.

(6) A hybrid objective function combining MSRE for aver-
age values with the Earth Movers Distance (EMD) for
histograms allowed for the identification of coefficients,
with emphasis on the histograms of the phase volume
fractions.

(7) A multistep approach to the optimization turned out to
be an efficient solution. In the first step a preliminary
ranges of coefficients, in which good solutions occurred,
were determined. The final optimization for the narrow
ranges proved valuable in terms of the results obtained.
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