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ABSTRACT: Advanced numerical models, which predict heterogeneity of microstructural features, are essential in 

designing modern multiphase steels. Models based on stochastic internal variables meet this requirement. Our objective 

was to account for the random character of the recrystallization and to transfer this randomness into equations describing 

the evolution of the dislocations and the grain size during the hot deformation of steel. The idea of the internal variable 

model with the dislocation density and the grain size being stochastic variables is described briefly in the paper. 

Histograms of the grain size measured in the experimental compression tests were used to identify the coefficients in the 

model. The model was used to simulations of the industrial process of the hot strip rolling. The same model was used to 

evaluate the uncertainty of the predictions of phase composition in the final product. 
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1 INTRODUCTION 

Continuous development of the industry is associated 

with the search for new construction materials that 

combine high strength with good formability and a high 

strength-to-density ratio. Steels have met these 

requirements for many decades. Historically, grain 

refinement was the main strengthening mechanism for 

steels investigated during the second half of the 20th 

century, when High Strength Low Alloyed (HSLA) 

steels were developed [1]. By controlling the 

precipitation and its influence on the recrystallization, 

an improvement of the strength and workability was 

obtained [2]. Different strengthening mechanism was 

used in the Advanced High Strength Steels (AHSS), 

which were developed in the last decades of the 20th 

century. These steels are composed of soft ferrite with 

islands of hard constituents of bainite, martensite and 

retained austenite. The AHSSs benefit from the best 

features of the phases they are made of [3]. They are 

locally isotropic but heterogeneous at the macroscopic 

scale due to spatial variations of phase fractions. Among 

AHSSs, Dual Phase (DP) and Complex Phase (CP) 

steels are the two most widely used in car body 

applications [4]. The correlation between mechanical 

properties and microstructure has been extensively 

studied for DP steels [5] composed of the fine ferrite 

matrix with dispersed hard islands of martensite. The 

high strength and total elongation of DP steels go side 

by side with low local formability caused by large 

gradients of properties at the phase boundaries. CP steels 

are characterized by the fine microstructure with a 

heterogeneous mixture of bainite, martensite and ferrite. 

Compared with DP steel, the volume fraction of hard 

phases is higher, leading to higher yield and tensile 

strength. On the other hand, the gradients of properties 

are smaller than that in DP steels. Thus, CP steels with 

a more heterogeneous microstructure have better local 

formability [3]. This feature makes them suitable for 

stretch-forming processes [6]. It is expected that more 

balanced properties of multiphase steels can be achieved 

by tailoring the microstructure gradients [7]. Advanced 

numerical models are needed to gain knowledge on 

distributions of microstructural features and to design 

thermal-mechanical cycles allowing to obtain moderate 

gradients of properties. These models have to have the 

capability to predict distributions of various 

microstructural parameters instead of their average 

values. Beyond this, since process optimization is the 

prospective application of these models, they must be 

characterized by low computing costs.  

Numerical tools, which can predict distributions of 

various parameters in heterogeneous materials, are 

intensively searched for. Extremely fast progress in this 

field has been observed during the last decades. Mean-

field and full-field material models are distinguished in 

the literature, see the review in the PhD thesis [8]. In the 

former, the microstructure is implicitly represented by 

closed-form equations describing grain size, dislocation 

density (uniform per grain), the kinetics of phase 

transformations etc. The latter is based on an explicit 

microstructure representation using Representative 

Volume Element (RVE) or Digital Materials 

Representation (DMR) concept [9]. The predictive 

capabilities of the full-field models are broader, but they 

involve much higher computing costs.  

Beyond predictions of the microstructure heterogeneity, 

a problem of the uncertainty of predictions is also 

essential [10]. Knowledge of the possible spread of the 

predicted target values, such as microstructural 

parameters, is needed for a reliable process design. In 

production, the spread of product properties is due to 

uncertainties in the processing conditions and the 

material behaviour.  
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Thus, the objectives of the work were twofold. The first 

objective was to apply the fast mean-field stochastic 

model with extended predictive capabilities. As it was 

shown in  [11], the description of the heterogeneous 

microstructure of metals and alloys using internal 

stochastic variables allows for building the mean-field 

model with the capability to predict gradients of product 

properties. The internal variables allow accounting for 

the history of the process. The stochastic character of the 

variables allows the prediction of distributions of 

parameters instead of their average values. 

The same stochastic model can also be used to evaluate 

the uncertainty of the predictions of microstructural 

parameters when the uncertainty of the input parameters 

(grain size) and boundary conditions (temperatures) is 

known. This was the second objective of the paper.  

2 MODEL 

The internal variable stochastic model for hot 

deformation was proposed in our earlier publication 

[12]. The model was identified based on the 

experimental data [11]. In publication [13] the model 

was applied to simulations of multi-step hot forming 

processes. The practical application of the model to 

simulations of the industrial process of the hot rolling of 

flat rods is described in [14]. The model details are 

presented in [12] and only the main equations are 

repeated here for the completeness of the presentation. 

2.1 MAIN EQUATIONS 

The model origins from the Kocks-Estrin-Mecking 

(KEM) approach [15,16] with the recrystallization term 

proposed in [17]. The deterministic model described in 

[18] was extended in [12], where the critical time for 

dynamic recrystallization was substituted by a random 

character of the recrystallization. The evolution of the 

dislocation density is governed by the equation: 
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where: t - time,  – strain rate.  

Coefficients A1 and A2 responsible for hardening and 

recovery are defined in [12]. The parameter (ti), 

accounts for a random character of the recrystallization 

and its distribution is described by the conditions: 

( )
( ) ( )

( ) ( )

1

11

1
0

0

i

i

i i

ip t if p t

otherwise
t

t t



 

 = 

   = =   

 
= 


= −

P

P P

 (2) 

In equation (3), p(ti) is a function that bounds together 

the probability that the material point recrystallizes in a 

current time step and the present state of the material:  

( ) ( )
( )
( )

6 5
4 1

1

3
exp

a i

i

i

i

t a
a t t

D t
p

RT
t

 
 −

−

− 
 

 
=  (3) 

where: D – grain size in m,  – energy per unit 

dislocation length, a4, a5, a6, a17 – coefficients. 

In equation (4), coefficient  represents a mobile fraction 

of the recrystallized grain boundary and depends on the 

distribution of (ti-1) in the previous step. The model was 

extended in work [13] by including interpass times and 

static phenomena in simulations. In consequence, it was 

possible to reveal numerical distributions of the 

dislocation density and the grain size. Many trajectories 

of equation (1) were calculated, each time using 

randomly generated values of (t0) and D(t0). These 

trajectories were then aggregated into histograms at 

consecutive time steps ti. We start with the grain size 

D(t0)  D0 which is a random variable described by the 

Weibull distribution. Based on measured grain size 

distributions shown in [11] the shape parameter equal to 

10 was assumed.  The scale parameter 
0D  was 

established as the average grain size measured after 

preheating before deformation. The changes in the grain 

size during deformation and during the interpass times 

were calculated based on the fundamental works of 

Sellars [19]. When during the calculation, the random 

parameter (ti) = 0, the considered point recrystallizes 

and its new grain size D(ti) is drawn from the Gauss 

distribution with the standard deviation being an 

optimization variable a16 in the model. The expected 

value of the grain size is either dynamically (for > 0) 

or statically (for  = 0) recrystallized grain size. The 

model contains 21 coefficients grouped in the vector a. 

These coefficients were identified based on the 

experimental data. 

Beyond the histograms of the selected parameters, the 

model calculates the average dislocation density av and 

further the flow stress p, as follows: 
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where: G – shear modulus, b – a module of the Burgers 

vector, Np – number of points in the Monte Carlo 

solution,  – coefficient.  

2.2 IDENTIFICATION AND VALIDATION 

Details of the identification procedure are described in 

[11,12]. The inverse algorithm developed in [20] was 

applied. The objective function was extended by 

including the metric of the distance between measured 

and calculated histograms of the grain size. The 

experimental data published in [21] were used. Steel 

DP600 with the symbol S406 in that publication was 

considered. The tests composed uniaxial compression of 

the samples measuring 10×12 mm at various strain 

rates and temperatures. The total strain was 1 in all the 

tests and the expected value of the austenite grain size 
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after preheating was 30 µm. A complete set of 

experimental data for these tests, including micrographs 

taken at various stages of the deformation and after the 

deformation, can be found in the RFCS report [22].  

The model with optimal coefficients was validated and 

selected results are shown in Figure 1 for the flow stress 

and in Figure 2 for the histograms of grain size. The 

experimental flow stress in Figure 1 was calculated by 

the inverse solution following the algorithm described in 

[20] for the forces measured in the compression tests. 

Good agreement between measurements and predictions 

of the model was obtained for all the experiments. The 

value of the Earth Movers Distance (EMD) metric [23] 

is given in the bottom left corner of the plots in Figure 

2. Analysis of all results confirmed the good accuracy of 

the model. In all the tests the EMD did not exceed 0.5, 

which is a reasonable limit for the microstructure 

evolution model. 

a)  

b)  

Figure 1: Selected results of a comparison of measured 

and calculated flow stress in uniaxial compression. 

3 RESULTS 

3.1 HOT ROLLING 

The hot strip mill composed of the reverse roughing 

mill, 6-stand continuous finishing mill and 2-section 

laminar cooling was considered. Rolling of the DP600 

steel strip measuring 1500×4 mm was simulated. Only 

the results for the finishing mill and the laminar cooling 

are presented below. The work roll radius was 450 mm 

in all stands and the distance between stands was 5.8 m. 

The rolling schedule is given in Table 1, where: h – 

thickness, r – reduction, v – velocity, t – interpass time. 

a)  

b)  

Figure 2: Selected results of a comparison of measured 

and calculated histograms of the grain size after 

uniaxial compression at the temperature 1100oC and 

the strain rate 0.1 s-1 (a) and 1 s-1 (b). 

Table 1: Rolling schedule considered in the paper. 

pass h, mm r v, m/s t, s 

0 40 - 0.95 - 

1 19.2 0.52 1.98 2.9 

2 12.6 0.344 3.02 1.9 

3 9.3 0.262 4.09 1.4 

4 6.9 0.258 5.51 1.1 

5 5.2 0.246 7.31 0.8 

6 4 0.231 9.5 0.6 

 

Classical hot strip rolling with the end of the rolling 

temperature of about 900°C was simulated. After exit 

from the last stand the strip enters the laminar cooling 

system. The model predicted full recrystallization after 

rolling and a model for recrystallized material was 

applied to simulate phase transformations. Calculated 

time-temperature profiles during rolling and cooling and 

load parameters during rolling are shown in Figure 3. 

Monte Carlo solution with 20000 points was used to 

calculate distributions of the dislocation density and the 

austenite grain size during rolling accounting for the 

random character of the recrystallization, following 

equations (2) and (3). Calculated histograms (10 bins 

each) of distributions of the dislocation density and the 

austenite grain size at various stages of the hot strip 

rolling are shown in Figure 4. It is seen that there is no 

dynamic  recrystallization in any pass, which is due to 

high strain rates and reasonably low temperature. The 

static recrystallization is completed during all interpass 

times, except the interpass between passes 5 and 6, 

where about 90% of the SRX was predicted. Anyway, 

as it has been mentioned, the material is recrystallized at 

the beginning of phase transformations 
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a)  

b)  

Figure 3: Calculated time-temperature profile (a) and 

load parameters (b) during hot finishing strip rolling 

and laminar cooling. 

transformations, when the temperature drops to Ae3, (for 

the investigated steel Ae3 = 842oC). 

As far as the austenite grain size is considered, it 

decreases rapidly in the first two passes and then 

remains reasonably stable. The histogram of the 

austenite grain size at the temperature Ae3 was used as 

an input for the simulation of phase transformations 

during laminar colling. Obviously, due to the full 

recrystallization of the steel, the effect of the dislocation 

density on the phase transformations was not 

considered. 

3.2 LAMINAR COOLING 

The results of calculations of the austenite grain size 

were used as input data for the simulations of the phase 

transformations during laminar cooling. At this stage, 

the deterministic model of phase transformations 

described in [21] was applied, but the input data, as well 

as the boundary conditions, were stochastic. The typical 

laminar cooling system composed of 2 sections with 40 

boxes each and described in [24] was considered. This 

system allows a 3-stage cooling sequence: 

fast/slow/fast. As a consequence of this sequence, the 

DP microstructure composed of ferrite and martensite 

can be obtained. Heat transfer coefficients depending on 

the water flux and the active number of boxes, which  

are given in [24], were used in the present work. 

 

a)  

b)  

Figure 4: Calculated histograms of the dislocation density (a) and the grain size (b) at various stages of the hot strip 

rolling. 
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The kinetics of transformations during laminar cooling 

calculated by the deterministic model [21] for the average 

austenite grain size is shown in Figure 5. The 

microstructure composed of approximately 80% of ferrite 

and 20% of martensite was obtained. 

 
Figure 5: Kinetics of transformations during laminar 

cooling calculated by the deterministic model.  

3.3 UNCERTAINTY 

Since the input data for the deterministic phase 

transformation model were stochastic, the calculated 

phase composition was obtained in the form of 

histograms. Additionally, the model allows to account for 

the uncertainty of the boundary conditions. In the first 

approach, we assumed that the heat transfer coefficient 

during laminar cooling is given by the Gauss distribution: 
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HTC - the expected value of the heat transfer coefficient 

calculated following the data in [24],  - standard 

deviation, assumed 50 W/m2K. 

A histogram of the martensite volume fraction calculated 

accounting for the random character of the input data and 

the boundary conditions is shown in Figure 6. This 

histogram represents the uncertainty of the predictions of 

the phase composition. 

  
Figure 6: Histogram of the martensite volume fraction 

calculated accounting for the random character of the 

input data and the boundary conditions. 

4 CONCLUSIONS 

The stochastic model describing the evolution of the 

microstructure during hot strip rolling and laminar 

cooling is presented in the paper. Performed simulations 

allowed to draw the following conclusions: 

• Identification based on the inverse analysis for the 

compression tests yielded coefficients in the model, which 

give good agreement between measurements and 

predictions of both average values and distributions of 

selected parameters. 

• Capability to predict histograms of microstructural 

features instead of their average values is the main 

advantage of the model. 

• The model was applied to simulations of the industrial 

hot strip rolling. The results agree with our knowledge 

about this process, confirming the model’s capability to 

support the optimal rolling technology design. 

• The deterministic simulation of the laminar cooling 

showed that the sequence of the fast/slow/fast cooling 

allows to obtain of a DP microstructure. 

• The phase transformation model can account for the 

random character of the input (grain size) and boundary 

conditions (HTC). In consequence, the uncertainty of the 

predictions of the phase composition could be evaluated. 

• In the hot deformation part, the model is completed and, 

when coupled with the finite element program,  can be 

applied to any hot forming process. The phase 

transformations part is still a work in progress. In the 

present work we used a deterministic model with 

stochastic input data. In the future, we will account for the 

random character of the nucleation during phase 

transformation. The model will be validated by 

comparison of the predictions with measurements of 

distributions of various microstructural features after 

cooling. 
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