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Abstract
In our earlier work, a stochastic model of multi-stage deformation at elevated temperatures was developed. The model was 
applied to calculate histograms of dislocation density and grain size at the onset of phase transformation. The histograms were 
used as input data for the simulation of phase transitions using the traditional deterministic model. Following this approach, 
microstructural inhomogeneity was predicted for different cooling conditions. 

The results obtained, showing the effect of dislocation density and inhomogeneity of austenite grain size on the microstruc-
tural inhomogeneity of the final product, can be considered reliable as they are based on material models determined in previous 
publications and validated experimentally. The aim of the present work was to extend the model by taking into account the sto-
chastic nature of nucleation during phase transitions. The analysis of existing stochastic models of nucleation was performed, 
and a model for ferritic transformation in steels was proposed. Simulations for constant cooling rates as well as for industrial 
cooling processes of steel rods were performed. In the latter case, uncertainties in defining the boundary conditions and segre-
gation of elements were also considered. The reduction of the computing costs is an important advantage of the model, which 
is much faster when compared to full field models with explicit microstructure representation.
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1. Introduction

The continuous development of the industry is related to 
the search for processing routes which allow construc-
tion materials with high strength, good formability and 
a high strength-to-density ratio to be obtained. Steels 
have met these requirements for many decades. Grain 
refinement has historically been the primary strength-
ening mechanism for steels and was studied during the 
development of high-strength low-alloy steels (HSLA) 

in the second half of the 20th century (Gladman, 1997). 
By controlling precipitation and its influence on recrys-
tallization and strengthening, strength and workability 
were significantly improved (Isasti et al., 2014). Mod-
ern multiphase steels which were developed in the last 
decades of the 20th century employ different strength-
ening mechanisms. These steels consist of soft ferrite 
and hard bainite, martensite and islands of retained 
austenite. The distribution of these constituents is at the 
macroscopic scale due to the spatial distribution of the 
volume fractions of the microstructural components. 
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Advanced numerical models that can predict micro-
structural heterogeneity are needed to gain insight into 
the distribution of microstructural features and to de-
sign thermomechanical cycles for optimal microstruc-
ture and resulting properties. In the work by Szeliga 
et al. (2019) it was hypothesized that applying stochas-
tic internal variables to the modelling of multiphase 
steels would allow the construction of models capable 
of predicting the various characteristics of heteroge-
neous microstructures. 

Although a variety of material models of varying 
complexity and predictive ability have been developed 
(Pietrzyk et al., 2015), mean-field models are still wide-
ly used for material processing design. The limitations 
of the current process design methodologies stem from 
the limited predictive capabilities of these models. This 
becomes even more important when the prediction of 
distributions of microstructural parameters rather than 
average values is required. This is specifically required 
to improve the impact and fracture toughness of con-
structional materials. The problem of reliable model-
ling of heterogeneous microstructure has been solved 
by full field models, which use RVE (Representative 
Volume Element) to explicitly represent the micro-
structure. Applications of the Cellular Automata (Song 
et al., 2015), the phase-field method (Militzer, 2012) 
and the FE+LSM (Finite Element + Level Set Method) 
(Bzowski et al., 2021) have become common during the 
last two decades. Although these methods can reliably 
reproduce microstructure evolution, they require long 
computing times, which is not acceptable when design 
and optimization of processes are needed. Decreasing 
computing costs is a crucial task in the present work.

With this motivation in mind, the authors devel-
oped a stochastic model describing the evolution of 
dislocation density and grain size during multi-stage 
deformation. The analysis and optimization of the 
numerical parameters of the model is described in 
(Klimczak et al., 2022), while its detailed description, 
identification, validation and application in hot rolling 
is presented in (Szeliga et al., 2022a). The model cal-
culates histograms of dislocation density and grain size 
after multi-stage deformation. On the other hand, the 
properties of the final product are maintained by con-
trolling the phase transformation during cooling after 
deformation. Therefore, our work aimed to extend the 
model by including the phase transformations during 
cooling. Accounting for the random character of nu-
cleation of a new phase is the first step towards this 
objective. The model will also have the capability to 
account for the uncertainty of the boundary conditions 
and for the segregation of elements in the banded mi-
crostructure.

A literature review shows that stochastic mod-
els have been widely used to describe the random 
nucleation process during phase transformations. 
However, the majority of the published approaches 
consider nucleation in the microstructure represented 
explicitly (full field models). Probabilistic methods 
have been used in cellular automata models to se-
lect nucleation sites or growth directions (Czarnecki 
et al., 2021; Wang et al., 2014), and in Monte Car-
lo methods (see Liu et al., 2018) for a review. Rios 
et al. (2009) consider atomic nuclei located in space 
in terms of heterogeneous Poisson point processes. 
They performed computer simulations of point pro-
cesses in square regions, but the spatial distribution 
of nucleation probabilities was known a priori. Our 
objective is to avoid costly computations on the mi-
crostructure represented explicitly and to develop 
a mean-field model based on a statistical description 
of the phenomena occurring in the microstructure. 
For steels, the model must be based on the theory 
of nonclassical nucleation that occurs in diffusional 
growth, where the diffusion field leads to a decrease 
in the probability of nucleation around the growth 
nucleus (Bruna et al., 2006). This aspect is consid-
ered in the present work. 

Statistical models of nucleation exploiting the 
“Correlation-Functions” and the “Differential-Criti-
cal-Region” were used in (Tomellini & Fanfoni, 2014). 
It was proved that both methods are suitable for de-
scribing phase transformations governed by nucle-
ation and growth. An analysis of these two approaches 
is presented in (Tomellini & Fanfoni, 2014), with an 
emphasis on transformations governed by diffusional 
growth, which cannot be described by the JMAK the-
ory. However, this solution requires numerical calcu-
lations of integrals to infinity for many points and is 
still computationally expensive. Therefore, we focused 
on the search for a simple model of the probability of 
nucleation, one based on our knowledge of the physical 
aspects of nucleation.

The general objective of the research described 
in this paper was a review of publications on the sto-
chastic models of nucleation and the formulation of the 
physical and theoretical background for a model which 
would account for the random character of nucleation 
of new phases. On the basis of this review, a probabil-
ity of the nucleation was defined and introduced in the 
evolution equation. In the first approach, we assumed 
a stochastic character of the nucleation and a determin-
istic equation describing the growth of the new phase. 
Consequently, the opportunity to predict the heteroge-
neity of the ferrite grain size and phase composition in 
the final product was created.
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2. The general idea of  
the stochastic  

phase transformation model
In the model under development, the equilibrium state 
of the metallurgical system is described by thermo-
dynamics. The phase transformation model predicts 
changes to the state of the system between the two 
equilibrium states during the transient process. The 
equilibrium is represented by the Fe-C phase equilib-
rium diagram. The following equations obtained from 
the approximation of the phase boundary lines in this 
diagram are used as the boundary conditions in the 
model:

 – equilibrium carbon concentration in the austenite 
(at the γ/α interface):

c c c T�� �� ��� �
0 1  

(1) 

 – maximum carbon concentration in the austenite 
(at the γ/cementite interface):

c c c T�� �� ��� �
0 1  

(2) 

In Equations (1) and (2) temperature T is in Cel-
sius degrees and cγα0, cγα1, cγβ0 and cγβ1 are coefficients, 
which in our case are determined using ThermoCalc 
software.

The development of a stochastic phase trans-
formation model for diffusion-controlled transfor-
mations is our future objective. The models, which 
account for the probability of both nucleation and 
growth, can be encountered in the scientific litera-
ture, but they are based on the explicit representation 
of the microstructure (Lyrio et al., 2019; Rios et al., 
2009) and are computationally expensive. Moreover, 
several published models deal with the solidification 
process (Maggioni, 2018) or solid-state phase trans-
formations in materials other than steels (Helbert 
et al., 2004). Thus, in the first approach, we focus on 
modelling of the random character of the nucleation 
only and a deterministic model is used to describe the 
growth of the new phase. 

3. Nucleation

3.1. State-of-the-art  
for nucleation

Nucleation is the first step in all phase transformations 
occurring in steels. In order to simulate nucleation, it 
is necessary to specify where the nuclei are located in 
space and how the nuclei appear as a function of time. 
In the classical JMAK theory (Johnson–Mehl–Avrami–

Kolmogorov) theory (Avrami, 1939; Johnson & Mehl, 
1939; Kolmogorov, 1937), there are two main nucle-
ation modes (Liu et al., 2018):

Classical nucleation theory assumes that the ther-
modynamic properties of the nucleus are homogeneous 
and identical to their equilibrium volume counterparts 
within the nucleus, and that the interface between the 
nucleus and the parent phase is sharp. The nucleation 
rate depends on the number of critical nuclei, which is 
determined by the activation energy barrier for hetero-
geneous nucleation and the jumping frequency of sol-
ute atoms across the interface, following the Arrhenius 
equation.

N T t C G T t Q
RT t

het N
[ ( )] exp

[ ( )]

( )

*

� �
��

�
�

�
�
�

�
�

 
(3) 

where: N
.
 – rate of nucleation; C – the density of nu-

cleation sites; ω – the frequency factor; ΔG*
het – the 

activation energy barrier of heterogeneous nucleation; 
QN – the activation energy of atomic migration across 
interface; T – temperature; t – time.

Classical nucleation models include: a) sequen-
tial nucleation model, b) pre-existing nucleation mod-
el, c) Avrami nucleation model and d) hybrid nucle-
ation model. All these models are described in (Liu 
et al., 2018). The equations describing the nucleation 
rates of the first three models are given in Table 1, 
where: N0 – temperature-independent nucleation rate; 
N* – number of nuclei already present per unit vol-
ume; δ – Dirac function; ϕ – cooling rate; λ – fre-
quency at which particles (nuclei) of supercritical size 
change to particles of subcritical size, following the 
Arrhenius equation; N’ – the number of subcritical 
particles at t = 0. 

However, the nucleation process may involve 
multiple nucleation mechanisms known as hybrid nu-
cleation. The nucleation rate of this model is equal to 
the weighted sum of the nucleation rates in Table 1.

The non-classical nucleation theory of Cahn and 
Hilliard is based on the description of interfaces by 
diffusion (or gradient thermodynamics). In this theory, 
the coalescence and stepwise nucleation of subcritical 
clusters are introduced by Ou et al. (2022). Heo et al. 
(2014) provide a brief overview of recent advances in 
modelling nucleation during solid-phase transitions 
based on non-classical descriptions of diffusion inter-
faces or key nucleation profiles. A method for mod-
elling phase transition dynamics based on differential 
critical regions and correlation functions is described 
in the work by Tomellini & Fanfoni (2014). This publi-
cation also compares these methods. 
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3.2. Stochastic approach  
to modelling nucleation

From the outset, a stochastic character of nucleation 
has been accounted for in the modelling of phase trans-
formations, with the JMAK approach based on Poisson 
statistics being used for many years. Although most 
of the published papers deal with the crystallization 
process, solid-state transformations have also been ad-
dressed in many publications. Early papers on the sto-
chastic approach to nucleation focused on the study of 
a random phenomenon such as nucleation by collecting 
a set of large nucleation data (Izmailov et al., 1999). Iz-
mailov et al. (1999) performed nucleation experiments 
under the same conditions many times. This approach 
allowed them to obtain nucleation statistics. 

The stochastic models of nucleation have been in-
tensively developed during last few decades. The fol-
lowing assumptions for these models were formulated 
in the work by Helbert et al. (2004):

 – The transformation occurs by nucleation and 
growth: it is believed that nuclei form at the sur-
face of the parent grain and grow inward. Tem-
perature is only a function of time.

 – Nucleation is the process by which atomic nuclei 
emerge in space and time. Assuming it is a sto-
chastic process, or rather a space-time Poisson 
process (Stoyan et al., 1987), the average nucle-
ation frequency is expressed as the number of nu-
clei formed per unit time and per unit surface area 
(in two dimensions). 

 – The growth process is deterministic and spatially 
uniform. For non-isothermal reactions, the radial 
growth rate γ, is a function of time.

The main stochastic nucleation model is based 
on a uniform Poisson point process and assumes that 
the crystallites are randomly distributed in space. This 
is how the phantom grows at the core of the phantom, 
sometimes in areas that have been transformed. This 

leads to a non-randomly occurring phenomenological 
equation in which the transformation fraction, X(t), at 
time t is related to the enhanced JMAK volume frac-
tion, XE, by the relationship:

dX t
dX

X t
E

i( )
[ ( )]� �1

  
(7) 

In the work by Tagami & Tanaka (1997) it is shown 
that the exponent is expressed as i = 2 – ξ, where ξ is 
the “overlap factor”, which accounts for the probability 
of the overlap between a phantom and a nucleus. This 
idea of the overgrowth of the phantom nuclei is used in 
several papers dealing with stochastic modelling of the 
nucleation.

As already mentioned, no correlation among 
nuclei is present in the homogeneous Poisson Point 
Process and, in the case of steels, the probability of 
a nucleus to appear depends on such parameters as un-
dercooling below Ae3, state of the austenite, etc. Thus, 
assuming Poisson homogenous nucleation and based 
on the fundamental knowledge regarding nucleation 
(Clouet, 2009), the probability that the nucleus of the 
new phase occurs in the time ∆t = ti+1 – ti is: 

P[ ( ) ]
( ) ( )

� t
p t if p t

otherwisei
i i� �

��
�
�

0
1

1  
(8)

P P[ ( ) ] [ ( ) ]� �t ti i� � � �1 1 0  

In Equation (8) p(ti) is a function which bounds 
together the probability that the material point becomes 
a critical nucleus in a current time step and present state 
of material. This probability is based on the following 
knowledge about nucleation sites: nucleation rate in-
creases with an increase of the undercooling below Ae3 
temperature, grain boundaries and shear bands in the 
deformed microstructure are the most favourable nu-
cleation sites.

Based on this knowledge, and assuming Poisson ho-
mogenous nucleation, the following equation was used:

Table 1. Equations describing the nucleation rate for different models

Model Equation Equation number

1. Continuous nucleation model N T t N
Q
RT t

N
[ ( )] exp

( )
� ��

��
�

��
0 (4)

2. Pre-existing nuclei model N T t N
T T t

[ ( )]
( )

� �
��

��
�

��
�

�
0 (5)

3. Avrami nucleation model N T t N dt
t

[ ( )] exp� � �
�

�
�

�

�
��� �

0

(6)
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p t b D A Ti
b b

e
b

( ) ( )� ��
1 3

2 3 4

� �   (9) 
where: Dγ – grain size; ρ – dislocation density; b1, b2, 
b3, b4 – coefficients.

In the numerical solution, in each time step, a ran-
dom number s ∈ [0,1] is generated and compared with 
the probability p(ti). If the latter is larger, the variable 
(ti) = 0, and the nucleus of a new phase occurs.

In Equation (9), grain size and dislocation den-
sity are stochastic variables, which are calculated by 
the model described in publication by Szeliga et al. 
(2022a). Coefficients b1, b2, b3, b4 can be determined by 
the inverse analysis of the experimental data (Pietrzyk 
et al., 2016). 

Intensive progress in the development of the sto-
chastic nucleation models has been made in the 21st cen-
tury. The mathematical background of these models is 
still based on the statistical methods, which include 
Poisson point processes. As previously, the transfor-
mation kinetics is described by the JMAK equation 
(Avrami, 1939; Johnson & Mehl, 1939; Kolmogorov, 
1937), which is based on Poisson statistics (no cor-
relation among nuclei is present). Rios & Villa (2009) 
revisited the classical JMAK theory and generalized it 
for situations in which nucleation took place both for 
homogeneous and for inhomogeneous Poisson point 
processes. In the latter intensity of nucleation varies 
in space. Inhomogeneous Poisson point process nucle-
ation is generally used to account for the heterogeneity 
of the nucleation sites. In the simulations performed in 
the work by Rios et al. (2009) nuclei distributed are 
in space with intensity varying according to a certain 
function known a priori. Here, X and XE are replaced by 
the position-dependent mean bulk density X(t, x), mean 
extended volume density XE(t, x), where x = (x1, x2, x3) 
are the position coordinates. Thus, the relationship be-
tween the volume fraction and the expanded volume 
fraction becomes the relationship between the average 
bulk density and the average expanded bulk density. 
The mathematical details of the solution can be found 
in publication by Rios & Villa (2009).

An example of the solution to this problem assum-
ing site-saturated nucleation and intensity of nucleation 
distributed linearly along one of the coordinates is pre-
sented by Rios et al. (2009). For the Poisson point pro-
cesser, we obtain:

p N A k x
k

x
k

[ ( ) ]
( )

!
exp[ ( )]� � �

�
�

 
(10) 

where: p(N(A) = k) – the probability of k nuclei falling 
within the unit volume A; λ(x) – function describing the 
distribution of the intensity.

In the solution described by Equation (10) the 
function λ(x) has to be known. Our objective is to intro-
duce statistical interaction between existing grains of 
a new phase and a new nucleus. The solution is based 
on the critical section approach (Alekseechkin, 2000). 
Let us find the probability p(t) that a randomly cho-
sen point O transitions to a new phase within the time 
interval ∆t. For this, the following two conditions are 
sufficient and necessary: a) point O is not transformed 
before time ti; b) a new phase nucleus capable of trans-
forming point O within the time interval [ti, ti + ∆t]  
appears at any time t’, 0 < t’ < ti. By combining the 
probabilities of the first event and the second event, 
we obtain a nucleation probability that takes into ac-
count the correlation between the nuclei and the exist-
ing grains of the new phase:

p t b D A T X ti
b b

e
b

i( ) ( ) [ ( )]� � ��
1 3

2 3 4 1� �   (11) 

where: X(ti) – volume fraction of a new phase in the 
time ti.

In the case of the austenite decomposition, carbon 
is pushed out from the ferrite grains and carbon content 
in the austenite cγ increases (see next chapter). Thus, 
the probability of nucleation in the neighbourhood of 
the new ferrite grains is decreased. This effect can be 
easily accounted for in the full field model, in which 
the solution of the carbon diffusion is performed. In our 
model, we introduced a statistical approach based on 
the average carbon content in the austenite. The idea of 
this stochastic approach to modelling austenite-ferrite 
transformation is shown in Figure 1. Thus, the Equa-
tion (11) is revised to the following form:

p t b D A T X t
c c
ci

b b
e

b
i

b

( ) ( ) [ ( )]� � �
��

�
�

�

�
�

�
1 3

2 3 4

5

1�
�� �

�

�
 

(12) 

where: c0 – carbon content in steel; cγ – average carbon 
content in the austenite, see Equation (17) in the next 
chapter.

Fig. 1. Carbon distribution as a function of distance from 
ferrite grain centre and the idea of the stochastic approach to 

nucleation model based on critical region method



Computer Methods in Materials Science 2023, vol. 23, no. 2

Ł. Poloczek, R. Kuziak, J. Foryś, D. Szeliga, M. Pietrzyk

22

Associated nucleation is also induced in 
stress-driven switching, where the strain field imparts 
a degree of spatial ordering to the nuclei (Bruna et al., 
2006), but this is not considered in the current work. 
Recapitulating, we will consider two mechanisms of 
nucleation in our stochastic model. One is the contin-
uous nucleation model, based on Poisson statistics, in 
which the nucleation rate is constant at constant tem-
perature (model 1 in Table 1). The other is the non-clas-
sical nucleation model, in which growing nuclei of the 
new phase and carbon diffusion give rise to reduced 
nucleation probability around this nucleus. 

3.3. Modification of  
the model accounting  

for the effect of  
microchemical segregation bands 

The solidification process occurs when the dendrites 
enter the liquid region. As the interface progresses, 
some solutes are incorporated into the dendrites, while 
others are released into the fluid. This distribution ef-
fect can lead to concentration gradients that lead to 
microchemical banding (Rivera-Díaz-Del-Castillo et 
al., 2004). In our model, we will account for the differ-
ence in the manganese content between the segrega-
tion bands (high Mn, Si, ...) and the distance between 
the bands (low Mn). Our objective was to include the 
effect of manganese segregation into the probability 
of ferrite nucleation defined in Equation (12). The in-
dependent variables in the model were the width of 
the manganese enriched band w and the distance be-
tween the bands d. The improved model accounts for 
a difference in the nucleation rate and the grain size 
between high and low manganese bands. The driv-
ing force for the transformation of austenite to ferrite 
depends on the Mn concentration and thus varies be-
tween microsegregation layers – ferrite tends to form 
in the Mn-poor bands. On the basis of this knowl-
edge, we proposed the introduction of coefficient b1 in 
Equation (12) in a certain interval [b1min, b1max] and to 
revise this equation as follows:

p t b b D A T

X t
c

i
b b

e
b

f i

( ) [ ( ) ] ( )

[ ( )]

max min
� � � �

� �
�

�
1 1 3

1

1

2 3 4� � ��

��
 

cc
c

b
�

�

�

�
�

�

�
�

5

 

(13)

 
where: ξ = w/d – relative thickness of the high manga-
nese band.

The b1min and b1max coefficients were determined by 
inverse analysis of the experimental data.

3.4. Growth

As mentioned earlier, the core growth model is deter-
ministic. It is based on an upgrade of the Leblond model 
(Leblond & Devaux, 1984), which describes the growth 
kinetics of new phases. The model is based on differen-
tial equations with respect to time and does not require 
the application of additivity rules as the temperature 
varies in the process. This is the main benefit of this 
approach. The original Leblond model assumes that the 
conversion rate is proportional to the distance from ther-
modynamic equilibrium at a given temperature:

dX t
dt

B X T X teq
( )

[ ( ) ( )]� �
 

(14) 

where: t – time; X – volume fraction of a new phase; 
Xeq – equilibrium volume fraction of the new phase in 
the temperature T; B – material constant.

In Equation (14) the equilibrium fraction of the 
new phase in the current temperature is calculated from 
the equation: 

X T
F
F

c T c
c T ceq

fT

f

( )
( )

( )
max

� �
�
�

��

�� �

0

 
(15) 

where: FfT – equilibrium volume fraction of the con-
sidered phase in steel at the current temperature T;  
Ffmax – maximum volume fraction of this phase in the steel.

The effect of grain size on the phase transition is 
considered. In addition to temperature, the coefficient B 
in Equation (14) also depends on the state of the mate-
rial before the phase transition. In our case, this state 
can be described by two internal variables: dislocation 
density and grain size, but only the latter is considered 
in the present work. The ferrite transformation coeffi-
cient B is defined as: 

B a D
T a
af

a
a

�
��

�
�

�

�
�6

7

8

10

9

exp
| |

 
(16) 

where: D – austenite grain size prior to transformation; 
a6, a7, a8, a9, a10 – coefficients.

Grain size is a stochastic variable and is calculat-
ed using the model developed for hot deformation. The 
mathematical background of the Monte Carlo solution in 
this model is described by Klimczak et al. (2022). The 
formulation of this model for the multistep deformation, 
as well as identification and validation of the model, are 
described in publications by Szeliga et al. (2022a, 2022b). 



2023, vol. 23, no. 2 Computer Methods in Materials Science

Accounting for the random character of nucleation in the modelling of phase transformations in steels

23

Modelling of phase transformations begins with 
an Equation (14) when the temperature drops below Ae3 
nucleation of the ferrite occurs. The transformed ferrite 
volume fraction Xf(T) is calculated with respect to the 
equilibrium volume fraction of ferrite Xeut at the eutectic 
temperature. Thus, the volume fraction of ferrite with re-
spect to the whole volume of the material is Ff = XeutXf. 
When the volume fraction of ferrite increases, carbon is 
pushed out into austenite and the average carbon content 
in the latter increases following the formula:

c
c X c

X
f

f
�

��
�

�

( )
0

1  
(17) 

The simulation continues until the transformed 
volume fraction reaches 1. However, when the average 
carbon content in austenite exceeds the limit cγβ given 
by Equation (2), the austenite-pearlite transformation 
starts in the remaining volume of austenite. The kinet-
ics of pearlite transformation is described by Equa-
tion (14), where the coefficient B is defined as:

B a D
T a
ap

a
a

�
��

�
�

�

�
�16

17

18

20

19

exp

 
(18) 

where: a16, a17, a18, a19, a20 – coefficients.

When the temperature is lower than the bainite 
transformation start temperature of the state variable 
a20, the bainite transformation starts. The kinetics of 
pearlite transformation is described by Equation (14), 
where the coefficient B has been defined as:
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where: a26, a27, a28, a29, a30 – coefficients.

At temperatures below the martensite initiation 
temperature, the remaining austenite transforms into 
martensite. The martensite transformation start tem-
perature is a function of the current average carbon 
concentration cγ, in the austenite as follows:

M a a cs � �
31 32 �  (20) 

where: a31, a32 – coefficients.

The volume fraction of the martensite is calculat-
ed from the Koistinen and Marburger equation (Koisti-
nen & Marburger, 1959):

X a M Tm s
a� � � �1

33

34exp[ ( ) ]  (21) 
where: a33, a34 – coefficients.

Equation (21) expresses the volume fraction of 
martensite relative to the remaining austenite volume 
at temperature Ms. The volume fraction of martensite 
relative to the total volume of the material is:

F F F F Xm f p b m� � � �( )1  (22) 

where: Ff, Fp, Fb – volume fractions of ferrite, pearl-
ite and bainite with respect to the whole volume of the 
sample.

The model contains several coefficients, which are 
grouped in the vector a = {a1, …, a32}

T. These coeffi-
cients are identified on the basis of dilatometric tests 
performed for the investigated steel. The inverse ap-
proach described by Rauch et al. (2018) was used. The 
same inverse algorithm was used for the identification 
of the coefficients b1 – b9 in the nucleation model and 
the ferrite grain size model.

The flow of the calculations for the whole mod-
el is shown in Figure 2. For each Monte Carlo point, 
the initial dislocation density is drawn assuming the 
Gauss distribution with the expected value ρ0 and the 
initial grain size is drawn assuming the Weibull distri-
bution with the expected value D0 (see Szeliga et al., 
2022a for details). 

Fig. 2. The flow of the calculations for the whole model 
composed of the hot deformation and cooling parts: TH – pre-
heating temperature; tH – preheating time; D0 – average grain 
size after preheating; Bs, Ms – bainite and martensite start 
temperatures, respectively; cγ – current carbon concentration 
in the austenite, cγβ – equilibrium carbon concentration at 
the γ-cementite interface, Np – number of the Monte Carlo 

points, Ns – number of time steps.
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Deterministic phase transformation models com-
bine nucleation and growth in one equation, with the 
JMAK equation being the most often used. Since it is 
an exponential equation with coefficients dependent on 
the temperature, it cannot be directly applied to pro-
cesses in varying temperatures. Therefore, in our mod-
el, the growth kinetics of the new phase is described 
by the ordinary differential Equation (14) based on the 
Leblond model (Leblond & Devaux, 1984).

3.5. Ferrite grain size

In steels with a carbon equivalent Ceq = (C + Mn/6) be-
low about 0.45, ferrite and pearlite transformations occur 
at low cooling rates. The main parameter of interest here 
is the ferrite grain size. Ferrite grains have been shown 
to nucleate at austenite grain boundaries, strain bands, 
second phase grains and recovered subgrain boundaries, 
especially when decorated with precipitates. Factors af-
fecting the ferrite grain size are the final austenite grain 
size (before phase transformation) and residual strain 
due to incomplete recrystallization, which are external 
parameters. Retained strain applies to strain that was not 
removed by recrystallization prior to transformation. 
Various general relationships for ferrite grain size have 
been proposed in the literature, some of which are sum-
marized in (Lenard et al., 1999). The deterministic equa-
tion proposed by Hodgson & Gibbs (1992) is one of the 
most commonly used equations in traditional modelling:
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where: εr – retained strain, Ceq – carbon equivalent, 
Cr – cooling rate, Dγ – austenite grain size prior to trans-
formation [µm].

This equation is suitable for the continuous cool-
ing processes, and it cannot be applied to the isothermal 
transformations. Therefore, on the basis of the equation 
(23), in our stochastic model, we proposed a new rela-
tionship with the average temperature of transformation 
as an independent variable. It was assumed that the fer-
rite grain size depends on the austenite grain size dis-
tribution, austenite deformation, average temperature of 
the ferritic transformation and probability of nucleation: 
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where: Dγ – austenite grain size prior to transforma-
tions; ρ – dislocation density; b6, b7, b8, b9 – coefficients.

In Equation (24) an average temperature of the 
ferritic transformation is calculated as:

T
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(25) 

where: Ti – temperature in the i-th time step; Nt – num-
ber of time steps during ferritic transformation; Xf – fi-
nal ferrite volume fraction; ∆Xf – increment of the fer-
rite volume fraction in the i-th time step.

In the present work recrystallization of the aus-
tenite was completed before the beginning of the 
phase transformations and the coefficient b9 = 0 was 
assumed. After identification of the coefficients b6, 
b7 and b8, the results obtained from Equations (24) 
and (23) for constant cooling rates and for εr = 0 were 
similar.

3.6. Numerical tests of  
the model

In order to evaluate the model’s performance, nu-
merical tests were carried out and constant cool-
ing rate experiments were simulated. The austenite 
grain size prior to transformations was introduced as 
a histogram, which was measured in the experimen-
tal samples after austenitization in the dilatometric 
tests. The average ferrite grain sizes for the following 
cooling rates 0.05°C, 0.2°C, 0.5°C, 2°C and 5°C were 
10.5 µm, 9.9 µm, 9.3 µm, 8.3 µm, 7.7 µm, respective-
ly. Calculated distributions of the ferrite grain size for 
different cooling rates are shown in Figure 3. These 
results confirm the qualitatively good predictive capa-
bility of the model. With the increasing cooling rate, 
the distributions of the ferrite grain size move towards 
lower values.

Fig. 3. Calculated distributions of the ferrite grain size for 
different cooling rates
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4. Measurement methodology  
and research results

4.1. Methodology

Due to the incomplete etching of ferrite grain bound-
aries (Fig. 4a), in the first stage of the analysis, 
boundaries corrections were made for better and eas-
ier detection (Fig. 4b). In the next step, the ferrite 
grain size was measured using Met-Ilo v12.1 soft-
ware. In the first step, k-means binarization of the 
bright phase was carried out. Then, manual correc-
tions were made for elements that were not included 
or elements that were mistakenly analysed during bi-
narization and also for elements below 3 pixels that 
were artefacts created in the metallographic process 
of preparing specimens. The final effect of the detec-
tion is shown in Figure 4c.

4.2. Results

The stochastic model predicts distributions (histograms) 
of parameters such as volume fractions of phases and size 
of the ferrite grains. A simulation of the cooling of the 
flat rod with a thickness of 28 mm made from steel con-
taining 0.12% C and 1.3% Mn was performed and the re-
sults were compared with the experiment. The measured 
time-temperature profile, which was used as an input for 
the phase transformation model, is shown in Figure 5a. 
Since the difference in the temperatures in the two loca-
tions is small, only the results for the centre of the rod are 
presented below. The time-temperature profiles shown in 
Figure 5 and the samples after cooling were subject to mi-
crostructure analysis. The microstructure after cooling is 
shown in Figure 5b. The ferrite/pearlite bands are clearly 
seen in this figure. The measured distance between the 
high and low manganese bands was 25.8 µm, and it var-
ied in a wide range between 11.2 µm and 39.2 µm. 

a) 

 

b) 

 

c) 

Fig. 4. Ferrite grain size detection procedure: a) output image; b) image after correction of grain boundaries;  
c) final detection image

a) 

  

b) 

Fig. 5. Measured time-temperature profile during cooling of the 28 mm thick flat rod (a) and microstructure  
after cooling with ferrite/pearlite bands (b)
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In Figure 6, the calculated distribution of ferrite 
grain size is compared with the measured value. Fairly 
good agreement was obtained between calculations and 
measurements. The calculated histogram of ferrite vol-
ume fraction after cooling, accounting for the statistical 
character of the phase transformation, is shown in Fig-
ure 6b. The measured average ferrite volume fraction 
was 0.82.

 
Fig. 6. Comparison of measured and calculated ferrite grain 

size histograms

The properties of final products depend on the 
ferrite grain size and the phase composition. The 
model calculates the stochastic distribution of these 
parameters, therefore, it can be used to evaluate the 
uncertainty of the predictions of mechanical prop-
erties. 

5. Conclusions

A model based on the heterogeneous Poisson point pro-
cess was proposed for ferritic transformation. Numeri-
cal simulations lead to the following conclusions:

 – The model belongs to the mean field models, and 
it does not require an explicit representation of the 
microstructure. As a consequence of this, comput-
ing times could be radically decreased compared 
to full field models. 

 – The predictive capabilities were extended compared 
to the conventional mean field models. The model 
statistically predicts the distribution of microstructur-
al features instead of their average values. It allows 
the calculation of distributions (histograms) of se-
lected parameters, taking into account the state of the 
microstructure before transformation, including the 
influence of microchemical bands. The uncertainty 
of the boundary conditions can also be accounted for.

 – Since the mechanical properties of final products 
(strength, elongation) depend on the ferrite grain 
size and the phase composition, the model can be 
used to evaluate the uncertainty of the predictions 
of these properties.
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